Rehabilitation for Rotator Cuff Injury:

Acute Phase

Physical Therapy

Pain control and inflammation reduction are initially required to allow progression of healing and initiation of an active rehabilitation program in patients with a rotator cuff injury. This can be accomplished with a combination of relative rest, icing (20 min, 3-4 times per d), and acetaminophen or an NSAID. Have the patient sleep with a pillow between the trunk and arm to decrease tension on the supraspinatus tendon and to prevent blood flow compromise in its watershed region. Patients are instructed to continue the pain control techniques at home, work, or vacation as part of their exercise program. The home exercise program builds on itself through each phase of the rehabilitation process, and carry-over should be monitored.

Other Treatment

Corticosteroids delivered directly to the site via injection can be considered to allow further progression of the rehabilitation for rotator cuff injury program. Place injections into the subacromial space, avoiding direct injection into the rotator cuff tendon. Advise the patient to limit activity that involves high-tensile loads (eg, maximal overhead throwing) for 2-3 weeks while the tendon is potentially at risk after injection, particularly if the patient exhibits rotator cuff muscle weakness. These injections need not be given to patients with complete rotator tears, especially if surgery is being considered.

Recovery Phase

Physical Therapy

The recovery phase from the rehabilitation for rotator cuff injury must include several components to be successful. These include the following: (1) restoration of shoulder ROM, (2) normalization of strength and dynamic muscle control, and (3) proprioception and dynamic joint stabilization.

Restoration of shoulder ROM

After the pain has been managed, restoration of motion can be initiated. Codman pendulum exercises, wall walking, stick or towel exercises, and/or a physical therapy program are useful in attaining full pain-free ROM. Address any posterior capsular tightness because this can lead to anterior and superior humeral head migration, resulting in impingement. Posterior capsular tightness is common in athletes performing overhead motions (particularly throwers), because the posterior muscles and capsule are greatly stressed during the follow-through phase of the throwing motion. This activity places large eccentric loads on the posterior capsule and posterior rotator cuff musculature and can result in microtrauma and inflammation, followed by scarring and contracture.

Many overhead athletes have a great degree of external rotation with restriction of internal rotation. This was once thought to be a normal adaptation to the demands of the sport. The tight posterior capsule and the imbalance it causes forces the humeral head anterior, producing shearing of the anterior labrum and causing additional injury. Stretching of the posterior capsule is a difficult task to isolate. The horizontal adduction that is usually performed tends to stretch the scapular stabilizers and not the posterior capsule. If care is taken to fix and stabilize the scapula, which prevents stretching of the ST stabilizers, the objective of posterior capsule stretching is obtained. The focus of treatment in this early stage should be on improving range, flexibility of the posterior capsular postural biomechanics, and restoring normal scapular motion.

Initially, ultrasonography to the posterior capsule followed by gentle passive prolonged stretch may be needed. Closely monitor ultrasonography use to avoid heating an inflamed tendon, which worsens the situation. Instruct the patient about proper posterior shoulder stretches with the scapula fixed, which should be performed after a period of aerobic exercise. Such exercise results in increasing the core body temperature. The increase in core temperature makes the tissues more extensible and allows for greater benefit from stretch. Each stretch should be held for a minimum of 30 seconds, although stretching for 1 minute is encouraged. Postural biomechanics are important because poor posture (eg, excessive thoracic kyphosis and protracted shoulders) increases outlet narrowing, resulting in greater risk for rotator cuff impingement. Restoring normal scapular motion is also essential because the scapula is the platform upon which the GH joint rotates; thus, an unstable scapula can secondarily cause GH joint instability and resultant impingement. Scapular stabilization includes exercises such as wall push-ups and biofeedback (visual and tactile).

Strengthening

Perform strengthening in a pain-free range only. Begin with the ST stabilizers. The scapular stabilizers include the rhomboids, levator scapulae, trapezius, and serratus anterior. Shoulder shrugs, rowing, and push-ups isolate these muscles and help return smooth motion, allowing normal rhythm between the scapula and GH joint. Then, turn attention toward strengthening the rotator cuff muscles. Position the arm at 45° and 90° of abduction for exercises to prevent the wringing out phenomenon, in which hyperadduction can be caused, stressing the tenuous blood supply to the tendon of the exercising muscle. Avoid the thumbs-down position with the arm in greater than 90° of abduction and internal rotation to minimize subacromial impingement.

Many ways to strengthen muscles are available. The rehabilitation program usually starts with isometric and co-contractions, progresses to concentric contractions, and finally incorporates eccentric contractions as part of the preparation for return to sports. Using the baseball thrower example, the most important muscle conditioning is that of eccentric control. Eccentric forces are the most damaging to muscles, and if the patient is not fully rehabilitated and conditioned, injury occurs or reoccurs. Additional strengthening techniques that can be used are progressive resistive exercises (PREs), Thera-Band (Hygienic Corporation; Akron, Ohio), and plyometrics. Use of isokinetic exercises has been debated because they are not performed in a functional manner. Probably the best use for isokinetic exercise machines is for objective side-to-side comparison of strength and progress made in strength rehabilitation. Incorporate endurance training into the program as it advances. When strength is restored, continue a maintenance program for fitness and prevention of reinjury.

Proprioception

Proprioceptive training is important to retrain neurologic control of the strengthened muscles, providing improved dynamic interaction and coupled execution of tasks for harmonious movement of the shoulder and arm. Begin tasks with closed kinetic chain exercises to provide joint stabilizing forces. Then, as the muscles become reeducated, one can progress to open chain activities, which may be used in sports or tasks. Capsuloligamentous structures contain sensory afferents, which respond to motion and changes in joint position, whereas musculotendinous structures sense muscle length and tension. Injury can affect these afferents, which require retraining much like restrengthening the muscles. In addition, proprioceptive neuromuscular facilitation (PNF) is designed to stimulate muscle/tendon stretch receptors for reeducation. In a 1965 report, Kabat described shoulder PNF techniques in detail.[26]

Surgical Intervention

Indications for operative treatment of rotator cuff disease include partial-thickness or full-thickness tears in an active individual who does not have improved pain and/or function within 3-6 months with a supervised rehabilitation program. An acromioplasty is usually performed in the presence of a type II (curved) or type III (hooked) acromion with an associated rotator cuff tear. Athletes with rotator cuff pathology secondary to GH instability also need to have this addressed. In surgical candidates, early repair is useful to avoid fatty degeneration and retraction of the remnant rotator cuff musculature. Functional recovery should be stressed, and, in a patient who can achieve pain-free activities of daily living in the setting of a rotator cuff tear, surgical repair may be avoided. Surgeries including muscle transfers and debridement are generally reserved for massive, irreparable rotator cuff tears. A latissimus dorsi tendon transfer is one type of treatment for irreparable rotator cuff tears that has demonstrated improvement in shoulder function, range of motion, strength, and pain relief.[27]  Attempts to enhance healing in rotator cuff repair have included the use of platelet-rich fibrin matrix applied to the tendon-bone interface at the time of rotator cuff repair; this technique, however, has no demonstrable effect on tendon healing or vascularity, manual muscle strength, or clinical rating scales. Whether fibrin matrix is the ideal substrate to enhance tissue healing remains unknown, and perhaps other forms of growth factors may prove to be better at enhancing tissue healing following surgery.[28]

Maintenance Phase

Physical Therapy

Return to task-specific or sport-specific activities is the last phase of rehabilitation. This phase is an advanced form of proprioceptive training for the muscles to relearn previous activities. It is an important phase of rehabilitation and should be supervised properly to minimize the possibility of reinjury. Rehabilitation begins at a cognitive level but must be practiced so that transition to unconscious motor programming occurs. All various phases of shoulder injury rehabilitation and any rehabilitation for rotator cuff injury may overlap and can progress as rapidly as tolerated, but all should be performed to speed recovery and prevent reinjury.

At the conclusion of formal therapy sessions, patients should be independent in an ROM and strengthening program and should continue these exercises, initially under supervision and then completely on their own. A natural tendency exists for patients to abandon the home program once they feel better; however, patients must be encouraged to continue a maintenance exercise program to prevent symptom relapse. Athletes are often tempted to return to their overhead throwing sport too soon after recovery of the acute phase.

 

Tags: , , , , ,




Comments are closed.